# import and instantiate model from sklearn.linear_model import LinearRegression model = LinearRegression() #prepare test data features_train = df_train.loc[:, ‘feature_name’] target_train = df_train.loc[:, ‘target_name’] #fit (train) model and print coefficient and intercept model.fit(features_train , target_train ) print(model.coef_) print(model.intercept_) # calculate model quality from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score target_prediction = model.predict(features_train) print(mean_squared_error(target_train , target_prediction))…